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The stability of equilibrium of a compressed rectangular bar made of an isotropic incompressible 
elastic material that satisfies the Hadamard condition is investigated. It is found that the qualitative 

behaviour of the bar depends on whether the material belongs to one of three classes, conventionally 
referred to as materials of low, moderate, and high stiffness. For materials of low stiffness the 
equilibrium of au arbitrarily thick bar undergoes a bifurcation at a finite value of the critical deform- 

ation. For materials of moderate stiffuess the critical deformation iucreases without limit as the relative 
thickuess of the bar increases. For materials of high stiffness a “limiting” thickness exists, above which 
no bifurcation of the equilibrium is possible. 

Simple cxiteria are obtained which enable one to determine the class to which the specific material 
belougs. It is established that the proposed classification of incompressible elastic materials is complete 

and consistent. Necessary and sufficient conditions for the existence of symmetric and antisymmetric 
modes of stability loss are found for materials of moderate and high stifkss. It is pointed out that, in 

some casea, symmetric bifurcation occurs prior to the autisymmetric one. For materials of low stiffness 
it is found that (for certain values of the relative thickness) double critical values of the deformation 
parameter may exist corresponding to two distinct buckling modes, namely, symmetric and aoti- 

symmetric ones. A sufficient condition for a symmetric bifurcation to be preceded by au antisymmetric 
one is stated. Specific models of incompressible elastic materials are cousidered. It is pointed out that 

the method developed in this paper is also effective in aoalysiog the axisymmetric iustability of a 

circular plate compressed by a uniform side pressure. 

1. FORMULATION AND SOLUTION OF THE BOUNDARY-VALUE PROBLEM 

CONSIDER the plane uniform deformation of an infinite bar of rectangular cross-section, the 
lateral sides x=fa of the beam being acted upon by a uniformly distributed normal load of 
intensity q (per unit area of the surface of the configuration subject to deformation) 

x = Ax, Y = h-‘y, Z = z (h s const) 

(1.1) 
lxIGa, IylGh, -=<z<+- 

It is assumed that no mass forces exist and the front sides y =fh are stress-free. Moreover, 
the bar is assumed to be made of an isotropic incompressible material. In (1.1) n, y, t and X, Y, 
2 are the Cartesian coordinates before and after deformation, respectively. The parameters q 
and 2, are related by the expression 
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q =2(q + ci)(k-2-P) 

c,~a-I/ar, (m= 1,2) 
(1.2) 

Here II is the volume density of the potential energy of deformation and I,,, (I = 1, 2) are the 
first and second principal invariants of Finger’s deformation measure [l] (for an incompres- 
sible material the third invariant Za is equal to unity). In what follows II is assumed to satisfy 
the Hadamard condition [l, 21 and to be twice continuously differentiable as a function of Z1 
and Z2 everywhere, except perhaps at the point Z1 =I, =3, which corresponds to the non- 
deformed state (thus included into consideration are physically essentially non-linear materials 
for which the equation of state does not admit of linearization in the neighbourhood of the 
non-deformed state). 

We will denote by D the region of admissible values of Z1 and Z2, which can be shown to be 
defined by 

for an incompressible material. 
Let Z be the rate in D corresponding to the uniform deformation (1.1) and defined para- 

metrically by Z1 = Z2 = hz + h-2 + 1 (0 < h < 1). We shall assume that the inequality 

Cl +c2>0 ((49 12) E r) (1.3) 

is satisfied for every point of Z. 
Condition (1.3) requires that the shear modulus of the material must be positive for any 

small simple shear deformation of the state of equilibrium in the XY plane described by (l.l), 
and is the same as one of the Baker-Ericksen inequalities [l, 21 (for points belonging to Z). 
Note that (1.3) does not contradict the Hadamard condition, since the latter implies that 
c, + c, 2 0 ((I,, I,) E D), which is a weaker version of (1.3). 

Within the framework of the static approach we shall study the stability of the equilibrium 
configuration (1.1) with respect to small plane perturbations. In the case of a plane deform- 
ation, the equilibrium equations, linearized in the neighbourhood of the state (l.l), have the 
form (y = A-‘) 

[(l+ &)a; + aflu+ h-‘a# = 0 

(3: + a;>u + w,p = 0 (1.4 

y&u + i&u = 0 

E=2~2(l,-Y2)2(c,,+2c,2+c22), c 
== (k,m=1,2) 

Cl +c2 h - arkal, 
(1.5) 

Here u and u are the projections of the displacement vector onto the X and Y axes of the 
Cartesian system of coordinates and ai (i =l, 2) are the operators of differentiation with 
respect to x and y, respectively. Since the material is incompressible, the linearized equilibrium 
equations (1.4) contain an unknown function p of the coordinates, which has the dimensions of 
pressure and can be determined in the course of solving the problem. The latter equation in 
(1.4) is the linearized incompressibility condition. 

Equations (1.4) can be derived by means of the theory of superimposing a small deformation 
on a finite one [l]. 

The components of the linearized Piola stress tensor [l, 21 can be expressed in terms of the 
displacements u and u and the pressure p 
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g-‘Pll = (1 + 4 + &)&I( + L-lp, g-‘PI2 = a,u + y&u 

g-‘P*1 = y&u +a+, g-lPzz = 2a,u + xp 

g’P33 = (6 + 2c)alu + p, Pi3 = Psi = 0 (i= 1.2) 

6 = 4g’(h + h-1)( 1 - yy[C, 1 + q*(l + h2) + c**x*1 

g = WI + c*), c = 2g-‘c&(1 - 3) 

(1.6) 

(1.7) 

According to (1.6), the linearized boundary conditions on the front sides of the bar can be 
expressed in the form 

where h is the half-thickness of the bar before deformation. The “sliding” clamping conditions 
are satisfied on the lateral sides x = fa [3,4], i.e. no normal displacement or shear stresses exist 

u h=*o = 0, ca,u + 7a2d k- fa = 0 (1.9) 

It is obvious that the boundary conditions (1.9) can be satisfied by seeking U, u, and p in one 
of the following forms 

u = UWsin kx, u = Vof)cos kx, p = hp(y)cos kx (1.10) 

* = WY)cos k ‘u = VC_Y)sin Ix, p = kP(y)sin lx (1.11) 

The parameters k and I can be determined from the conditions sinka = 0 and cosla = 0, i.e. 

k=k, ==, l=,, = n(2;a-1) 
a 

(m = 1.2,3,...) (1.12) 

Substituting (1.10) into (1.4) and (1.8), we obtain the homogeneous boundary-value problem 

I/” - (1 + &)k*U - kP = 0 

V” - k2V + h*p’ = 0 

ykU + V’ = 0 

(1.13) 

(u’-ykv) Iyr*h=o. (2V’ + h2P) ly = fh = 0 (1.14) 

for U, V, and P, the prime denoting differentiation with respect to y. Obviously, problem 
(1.13), (1.14) admits of two types of solutions. For one of them the deflection amplitude V(y) is 
an even function of y, while being an odd function for the other one. Moreover, the loss of 
stability has, respectively, an antisymmetric or symmetric form relative to the middle plane 
y= 0 of the bar. Consequently, it is natural to say that a solution of the first type is anti- 
symmetric and a solution of the other type is symmetric. An antisymmetric solution corres- 
ponds to the bending forms of loss of stability of the bar. 

Leaving out the intermediate discussion, we wih state the final form of the solution of the 
boundary-value problem (1.13), (1.14) for the two cases at hand 

(1.15) 
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WY) = sh(wmky) , 
ch(o,kh) 

y+(y) = sh(mrnky) 
m sh(o,kh) ’ 

(m= 1.2) 

The minus and plus superscripts in (1.15) and (1.16) correspond 
solution, while the subscripts correspond to the symmetric one. Here 

01.2 =H(JFc&m 

(1.16) 

to the antisymmetric 

(1.17) 

Formulae (1.15) and (1.16) are suitable for w, + cc,. The case of equal characteristic numbers 
((4 = 02 = w) can be obtained from (1.15) and (1.16) by taking the limit as w, + w and w, + w. 

If the unknowns u, u, and p are sought in the form (l.ll), the corresponding boundary-value 
problem for the amplitude functions U, V, and P and its solutions in the antisymmetric and 
symmetric cases can be obtained from (1.13)-(1.16) by the substitution k _ -2. For brevity, the 
relations obtained in this way will be said to be concomitant with (1.13)-(1.16). 

The two equations (1.16) (as well as the concomitant equations) define the bifurcation values 
of y for the antisymmetric and symmetric forms of loss of stability, respectively, and will 
henceforth be called the characteristic equations. 

2. ANALYSIS OF THE CHARACTERISTIC EQUATIONS. CLASSIFICATION 
OF ISOTROPIC INCOMPRESSIBLE ELASTIC MATERIALS 

On substituting k = km and 1= l,,,, respectively, into (1.16) and into the equation concomitant 
with (1.16) (in accordance with (1.12)), one can express the characteristic equations as follows: 

g[(w; +y2)2w2cthw10mz-(w; +Y’)~w, cthw+r,r]=O (2.1) 

gl<w: + Y 2)2w2 th w,b,f - (w; + y2)’ w, th w20,,,z] = 0 (2.2) 

z E h/a, <s,,, = nml2 (m = 1, 2, 3,...) (2.3) 

The first of these equations corresponds to the antisymmetric case. The second equation 
corresponds to the symmetric case. If ~tl is even, the critical values of y defined by (2.1) and 
(2.2) correspond to buckling modes of the type (1.10) (where k = CT,,, /a). If m is odd, the critical 
values of y correspond to buckling modes of the type (1.11) (where 1= a,,, la). 

An analysis of (2.1) and (2.2) reveals that, subject to the restrictions on the potential II 
adopted in Sec. 1, the following three essentially different alternatives are possible: 

1. a bifurcation of the equilibrium state (1.1) of the bar occurs for any value of the relative 
thickness T, the loss of stability of an arbitrarily thick bar occurring at a finite value of the 
critical deformation y.; 

2. a bifurcation of the equilibrium of the bar also occurs for any z, but the critical 
deformation y. increases without limit as z increases to 00; 

3. it is impossible for the equilibrium of the bar to undergo a bifurcation for z > T., where 2. 
is a fiied value of z (called henceforth the “limiting” thickness); if z ZG T., then, as a rule, a 
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bifurcation of the equilibrium occurs (although exceptions are possible). 
The first situation is typical of the majority of known models of incompressible elastic 

materials (1, 5, 61 (the Treloar, Haney-Rivlin, Bartenev-Khazanovich, Klosner-Segal, 
Hutchinson-Becker-Lendel, and other models). Examples of potentials for which the second 
and third cases occur are presented in Sec. 3. 

As a consequence, it is found to be useful to divide all isotropic incompressible elastic 
materials into three groups. For brevity, we shall refer to them as materials of low, moderate, 
and high stiffness (in accordance with cases l-3). 

To give a precise formulation of the results obtained, we will introduce the following 
notation 

Wy)=4-W-Y-PL(Y), YE L=i;il, +=) (2.4) 

r,+ ={yoL: R(y)>O), r,- =(yeL: R(y)<O) 

rjpO={yEL: R(y)=O} (2.5) 

A(Y) = P(Y) - 2~. C(Y) = P(Y)+2Y* Y f ZJ (2.6) 

r,- ={ynL: A(y)cO] (2.7) 

(2.8) 

Y(Y2 +f+)L) Y(Y2 +l+lQ 
a= k(y_1)2 4 Y EL\r:: (72 = ,y(y+1)2+A,~ Y EL 

G(y)=F(y)-z, $$k-; 
(2.9) 

(2.10) 

A bar denotes the closure of a set and a slash denotes the set-~eoretic difference. 

Theorem 1. We will assume that the potential lI satisfies the Hadamard condition (1.3) and 
the restrictions 

NY) < 0. YE L (2.11) 

(2.12) 

(2.13) 

Then a uli~ting~ thickness IL exists above which it is impossible for the equilib~um of the 
homogeneous configuration (1.1) to undergo a bifurcation, i.e. neither of the characteristic 
equations (2.1), (2.2) has a solution with respect to y (for all m 3 1). But if 7 s z, the following 
assertions hold. 

1. For a given m- 3 1, the characteristic equation (2.1) is solvable with respect to y if and only 
if 

m7E TV01 

where T- is a closed bounded set consisting of a finite or 
intervals 

T- = fi [t;,9,] (IS n- C +w) 
#I=1 

(2.14) 

denumerable family of disjoint 

(2.15) 
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G- =infT-30, SupT-62, 

t ,1 d e,, < t- s 0; n (n = 2,3w,rl-) 

The set rt”- is always nun-empty, but dues not have to cover the interval [O, L]. The equality 
t; = 0 holds, subject to the condition 

Otherwise s; > 0. 
2. If 

(2.16) 

(2.17) 

(see the notation (2.7)~(2.10)), then the characteristic equation (2-2) has no solutions with 
respect to y for any m 3 1. Moreover, T- consists of a single interval 

T- = [tr,0i], t, a 0, 0; = T, 

3. If the requirement 

is satisfied, then a closed bounded set T+ exists that can be represented as a finite or denumer- 
able union of disjoint intervals 

T+ = >i rr-,“*e;21 (16 n+ < -I-=) (2.19) 
= 

f;=infT+>0, supT+c~, 

m*_l d e;__, < fn+ G 0; (n = 2,3,...,n+) 

such that, for any given m 3 1, the characteristic equation (2.2) is solvable if and only if 

4. For a given z > 0, antisymmetric buckling modes exist if and only if there is a number 
m * 1 such that the condition (2.14) is satisfied, In particular, under the conditions (2.16) and 
(2.171, antisymmetric modes exist for all z G z, (and anly for such 2). 

5. For a given z> 0, symmetric buckling modes exist if and only if condition (2.18) is 
satisfied and there is a number ma 1 such that (2.20) is satisfied, In particular, if condition 
(2.17) is satisfied, no symmetric forms exist for any z > 0. 

Rtz~rk;s on Thecmrn 1.1, If requirement (ZAS) is satisfied, the symmetric buckling modes may occur 
prim to the antisymmetric ones. We also observe that the inequality b(T)*0 (TEL) is a sufficient 
condition for the non-existence of symmetric modes. 

2. In the general case, the equality T’ UT- =[O, 2.1 is not true, i.e. for ~b T,, a z may exist such that 
Eqs (2.1) and (2.2) have no solutions and a bifurcation of equilibrium is impossible. 

3. In order to make the formulation of the theorem more compact in the exceptional cases when 
mr = 7. and My)/r’ has a finite liiit as y + +=, the “liiiting” solutiun y=+-, which is sometimes 

possible, is also included among the solutions of EQ. (2.1). The latter solution has no mechanical meaning 
and can be easily discarded in any specific situation. 

4. Situations when the “limiting” thickness z. is isolated in the following sense are included: a 
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neighbourhood W, of Z, exists such that, for ‘5 E W., a bifurcation of the equilibrium of the bar ouxu-s if 
and only if r=r,. 

5. The critical values of y corresponding to the symmetric modes of stability loss (provided the latter 
exist) lie inside the interval (1,3). 

6. It can be shown that the sets T* consist of a finite system of intervals if the equation F(y) = nrr has 
not more than a finite number of solutions on any bounded subset of L for any n 2 1. For brevity, we 
shall refer to the latter restriction on the potential II as the F-condition. The geometric meaning of the F- 
condition is that the set of branch points of the real spectral curves k = k(y) of the boundary-value 
problem (1.13), (1.14) has no accumulation points in any bounded region in the half-plane y > 1, I k I< w. 
Physically, it can be regarded as the requirement that the mechanical characteristics of the material should 

vary more or less smoothly during the deformation. As a rule, the F-condition is satisfied. It may be 

violated only in individual cases of no practical interest (for example, for oscillatory potentials II, which 
can hardly pretend to provide an adequate description of the behaviour of real materials). Thus the sets 
T* are most frequently formed by a finite number of intervals. 

The proof of Theorem 1 (and all subsequent results) is very long and will therefore be 
omitted. We will merely observe that the critical values of y can obviously be determined in 
two stages. Firstly, one can construct the functions 8 = 0(y) starting from the equations 

8[(o: +y2)202c~o,~-(o~ +Y~)~w, cth~,O]=O (2.21) 

P[(o; +y2)202 the@-(oj: +Y~)~o, thm,81= 0 (2.22) 

Then one can find the points of intersection of the curves (in the (y, 0) plane) with the straight 
lines 

0 = o,z (m = 1, 2, 3,...) (2.W 

The numbers o, (m = 1,2,3,. . . ) are determined by (2.3). The x-coordinates of the points in 
question are equal to the bifurcation values of 7. The problem can therefore be reduced to a 
study of the position of the spectral curves of Eqs (2.21) and (2.22) Since the right-hand sides 
in (2.23) are real valued, it is possible to confine oneself to the study of the real part of the 
spectrum only. For special models of incompressible materials, a similar analysis of Eqs (2.21) 
and (2.22) (which are exactly the same as the characteristic equations of the theory of uniform 
solutions for prestressed elastic plates) can be found, for example, in [7, 81 (the Treloar and 
Mooney-Rivlin materials), and [9] (the Bartenev-Khazanovich and Chernykh-Shubina 
materials).? 

Theorem 2. Let all the requirements of the premise 
inequality (2.13), instead of which the condition 

of Theorem 1 be satisfied, except for 

]im Co=0 
y=s- y4 

is satisfied. Then a bifurcation of the equilibrium of a compressed bar 
critical value y.(r) of y increasing without limit as the thickness 
Moreover, the following assertions hold: 

1. when the condition 

E z(y)=+_ 
y-a+0 y - 1 

(2.24) 

occurs for all z > 0, the 
‘5 increases to infinity. 

(2.25) 

t!kc also: RUDEV A. N., Homogeneous solutions for an elastic plate in the case of an affine initial deformation. 
Rostov-on-Don. 1980. Unpublished paper, deposited at VINlTI 04.07.80, No. 3937-80. 
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is satisfied the characteristic equation (2.1) is solvable with respect to Y for any ma 1 and 
z >o; 

2. if condition (2.25) is violated for any fixed z > 0 then an integral number m(z) > 1 exists 
such that the characteristic equation (2.1) has no solutions for m < m.(r) and has at least one 
solution for M % m(z); 

3. if the requirement (2.17) is met, the characteristic equation (2.2) has no solutions for any 
ma1 and r>O; 

4. assertion 3 in the conclusion of Theorem 1 holds; 
5. antisymmetric buckling modes exist for any z > 0; 
6. assertion 5 in the conclusion of Theorem 1 holds. 

Remarks on Theorem 2.1. As a rule, for any T, the bifurcation value y, of y fails to be uniquely defined. 
Since the assertion of the theorem concerning the behaviour of y.(z) as t + 00 is independent of the 
choice of y., it follows that it is correct. In particular, y.(z) can be understood to be the least critical value 
of y for the thickness z in question. In this case y.(r) is, in general, a piecewise-continuous function of 2 on 
the ray (0, +=). 

2. Remarks 5 and 6 on Theorem 1 remain valid under the assumptions of Theorem 2 (the latter remark 

applies to T’). 

Theorem 3. Assume that the following conditions are satisfied: 
1. the potential ll satisfies the Hadamard condition and the restriction (1.3); 
2. the function R(Y) has an isolated zero Y0 on L; moreover, the set I’; is finite, and the 

inequalities (YO = supr,O, Y0 c Y1 G +m, 0 < a c Y” - 1) 

Wy)<O, Y~L- =(l.ro); R(y)>O, Y EL+ =(Yo.YI) 
(2.W 

are satisfied; 

R(Y) < 0. Y E ho - a, y” ); R(y) > 0, y E (r” ,+m) 

3. if A(Y,) = 0, then Y. fails to be a limiting point of the set I’;; 
4. X(Y) satisfies (2.12); 
5. if A(yo) ~0, then: (a) the inequality infr; > 1; is satisfied; (b) a neighbourhood W of y. 

exists such that R(y) is a continuously differentiable function in W and R(y,)>O (the dot 
denotes the derivative with respect to y). 

Then a bifurcation of the equilibrium state (1.1) of the bar occurs for all z > 0. Moreover, the 
least critical value y. of y does not exceed y. 

In addition, the following assertions are true. 
1. Antisymmetric and symmetric buckling modes exist for any thickness z > 0. 
2. Under condition (2.25), the characteristic equation (2.1) is solvable (with respect to Y) for 

any m a 1 and z > 0. If the condition (2.25) is violated, a sequence of “minimum” thicknesses 
T; (m= 1,2,3, . . .) exists such that, for a fixed m a 1, Eq. (2.1) is solvable if and only if z 5 2;. 
The sequence 2; (m= 1,2,3, . . .) decreases monotonically and converges to zero 

limT,=o 
m-b- 

(2-V 

3. If the requirement 

ww 

is met, the characteristic equation (2.2) is solvable for any ma 1 and z > 0. But if (2.28) is 
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violated, a sequence 2: (m= 1, 2,3, . . .) of “minimum” thicknesses exists such that, for a fixed 
m * 1, IQ. (2.2) is solvable if and only if z ) 2:. The sequence T’, (m = 1, 2,3, . . .) decreases 
monotonically and converges to zero 

lirn 2:=0 
m+- 

(2.29) 

4. If the inequality 

4~0) a 0 w-9 

is satisfied, then, for any m- > 1, a value T,,, of z exists such that, for z L T,,,, the least solutions 
Y;(z) and Y:(T) of E!qs (2.1) and (2.2), respectively, satisfy the relation 

r: (@ E L* (2.31) 

The sequence T,,, (m = 1,2,3, . . .) d ecreases monotonically and converges to zero. But if the 
condition 

A(YoI < 0 (2.32) 

is satisfied, an integral number N 3 0 exists such that the following relations hold 

y;(zln”‘)=yo (ma 1, n>2N) (2.33) 

,r E @Or) (2r+i) 
In ,2, )*yfm(T)EL* (Mel, r2N) (2-W 

7 E (42r+l) (2r+2) 
m ,‘5, )*y;(‘F)ELi (m&l, raN) (2.35) 

(2.36) 

In (2.31), (2.34), and (2.35) the plus and minus indices appear simultaneously either as 
superscripts or subscripts. 

5. If the “minimum” thicknesses 2: and 2; exist and the inequality (2.32) is satisfied, then 

(2.37) 

6. If the function A(y) is non-negative for y >l and yi =+-, then (2.31) holds for all mz= 1 
and z > 0, i.e. the antisymmetric modes must precede the symmetric ones. 

Remarks on Theorem 3. 1. The mechanical meaning of the “minimum” thicknesses is that, for some 

materials, symmetric (or antisymmetric) buckling modes with m nodal lines exist only for z 9 5; (or 
z 3 7;). If, for a bar made of such a material, the relative thickness z is fixed, then, in view of (2.27) (or 
(2.28)), a symmetric (or antisymmetric) bifurcation always occurs, but the number of nodal lines cannot 

be arbitrary and must be greater than the least number m that satisfies the inequality z 2 2: (or z ) r;). 
As an example, one can consider the potential (3.15) under the condition n E (213, l), in which case the 
“minimum” thicknesses 7; exist (see Sec. 3). 

2. The inequality A(7) b O(7 E L) is a sufficient condition for the symmetric modes to be preceded by 

the antisymmetric ones, not only within the framework of Theorem 3, but also in the most general case 
when II satisfies both the Hadamard condition and (1.3). 

3. The conclusion of Theorem 3 remains valid if assumption (a) in Condition 5 is omitted and 
Condition 4 is replaced by 
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lim cO,cr, 
7x0 7-l (2.38) 

Here cr. = 1.11008 . . . is the unique positive solution of the equation H(a) = x, where the function H(a) 

is defined by 

In some cases it may be preferable to verify (2.38). 
Theorem 3 implies that if the condition (2.32) is satisfied and z E (z?“, c) (at least for sufficiently 

large r), then the mth symmetric mode of stability loss can be observed at a lower critical deformation 
value than the m th antisymmetric mode. But since the least bifurcation value of 7 is given by min,,(7; 
(r), 7;(r)] in the general case, the values of the relative thicknesses z for which the minimum is attained 

for a symmetric buckling mode are not excluded. Consequently, Remark 1 on Theorem 1 remains valid 

under the assumptions of Theorem 3 (as well as Theorem 2). Moreover, a buckling mode with several 
nodal lines may correspond to the least critical value of y. 

We also remark that if the inequality (3.32) is satisfied, then y0 is a common solution of Eqs (2.1) and 
(2.2) for z = d,“’ (m, n P l), i.e. 7,, is a double eigenvalue of the boundary-value problem (la), (1.8), (1.9), 
to which there correspond two distinct buckling modes, namely, an antisymmetric and a symmetric one. 
On the basis of what has been said above, one can expect interesting effects in the analysis of the post- 
critical behaviour of an elastic body. However, this is a subject for a separate study. 

Theorems l-3 can obviously serve as sufficient criteria for a material to be of high, 
moderate, or low stiffness. It can be shown that the first two theorems give not only sufficient, 
but also necessary conditions. In view of this, a comparative analysis of Theorems l-3 enables 
us to conclude that: 

1. for materials of high stiffness, the possible buckling modes (both antisymmetric and 
symmetric ones) have a limited number of nodal lines for any fixed z c z,; 

2. for materials of moderate stiffness, the number of nodal lines can be as large as desired in 
the case of the antisymmetric modes, but it is bounded for the symmetric ones (for a fixed 
z>O); 

3. for materials of low stiffness (in the framework of Theorem 3), the existing buckling 
modes-both antis~et~c and s~et~c ones-can have as large a number of nodal lines as 
desired for any z > 0. 

Theorems l-3, which reveal the most typical aspects of the behaviour of incompressible 
elastic materials (under the restrictions on II adopted in Sec. l), do not exhaust the whole 
variety of situations allowed by the Hadamard condition. Thus, the determinant function R (y) 
may have a zero at y,, without changing the sign (see example (2.44) below), or several zeros 

(1) (2) 70 , Yo 3 ’ - * 9 yff) (either simple or of arbitrary multiplicity), or a denumerable set of zeros, or 
even a continuum of zeros (either bounded or unbounded). It is impossible to give a complete 
description of all admissible alternatives. Each case that fails to fit into the framework Of 
Theorems l-3 requires a separate discussion. Nevertheless, the following general result holds. 

Theorem 4. Suppose that assumption 1 of Theorem 3 holds and one of the mutually 
contradictor ~nditions stated below is satisfied (see the notation (2.5)) 

I%$ (2.39) 

(ri=L)* 
[ 

lim a=0 
y=aTo 7-l 1 r; =L 

(2.40) 

(2.41) 

Then the following assertions hold: 
1. for any z>O, at least one of EZqs (2.1), (2.2) is solvable for 7, i.e. the equilibrium of the 
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homogeneous configuration (1.1) undergoes a bifurcation; 
2. if r.(z) is the least critical value of y for the given thickness z, then y.(z) is a bounded 

function on the ray (0, +-); 
3. If condition (2.39) is satisfied, then y.(z) satisfies the estimates 

r.(r)< inf ri (inf l-1 > 1) 
(2.42) 

Y.(T) c 3 (inf Ii = 1) 

4. the relation 

Y*W = 1, z E (0, +=) (2.43) 

is satisfied if (3.29) is violated; 
5. an unbounded set T- of continuum intensity exists such that antisymmetric modes of 

stability loss exist for all z E T-; 
6. if requirements (2.40) and (2.41) are satisfied, then there is an unbounded set T' of 

continuum intensity such that symmetric modes of stability loss exist for all z E T'; 
7. if the sets T' and T- exist simultaneously, then they can be chosen in such a way that 

T' u T- = (0, +-); otherwise one can assume that T- = (0, +-). 

Remarks on Theorem 4.1. In general, for a given r > 0, the set of critical values of y does not always 

contain a minimum element. In such a case y.(s) (which appears, in particular, in (2.42) and (2.43)) is to 
be understood as the infimum of this set. 

2. If (2.39) is satisfied, then it is possible that no symmetric modes of stability loss exist for any r > 0. As 
an example, we mention the potential 

n(l,,l,)=dl~(J,)+dz~cJz) 

(d,aO. d2*0, df+d;fO) 

Jr =f/2(lt -1+,/m> (k=1.2) 

w4) 

where the function @(t) is given by the integral representation 

o(r)=; (e-1);$;+1)27 ee12de (121) 

1 

It can be verified that the potential (2.44) satisfies the Hadamard condition, restriction (1.3), and 

relation (2.39) with I,” = {S}. Thus the characteristic equation (2.2) has no solutions for any z > 0 and 
m*l. 

3. We note that in the most general case (when II satisfies the Hadamard condition and the restriction 

(1.3)) the necessary and sufficient conditions for the nonexistence of symmetric buckling modes have the 

form 

G=4. r,-3(1,3). I-,-nr;=g (2.45) 

In particular, for the potential (2&t), we obtain L> = $, & = L \ [S), and I; = $, i.e. the requirements 

(2.45) are satisfied. 
4. It is obvious that Theorem 4 provides sufficient conditions for the material to be of low stiffness. It 

turns out that conditions (2.39)-(2.41) are not only sufficient, but also necessary. On taking account of 
what has been said above regarding Theorems 1 and 2 and comparing requirements (2.11)-(2.13), (2.24), 
and (2.39b(2.41), we conclude that the above classification of incompressible elastic materials is complete 
and consistent. 

We remark that the results obtained in Sec. 2 also hold in the case when Il satisfies the strong ellipticity 
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condition [1, 21, since the latter ensures that the Hadamard condition and requirement (1.3) are both 
satisfied. 

We shall consider a number of specific examples which illustrate the discussion in Sec. 2. 

3.1. A Hart-Smith material [S, lo] 

n=d,lav’t~-3~dZt+d21n~ (d, >O, d2a0, v>O) (3.1) 

The potential (3.1) was obtained in [lo] using the non-Gaussian molecular theory. One can prove the 
foilowing sufficient criterion for the Hadamard condition to be satisfied. 

Lemma 1. If the elastic constants dxl h9 and v sat&i& the inequaiities 

(3.2) 

where ib(v) is defined by 

~(“)=(J~-3”)exp[H(9v+l-3~~)] (3.3) 

then the Hadamard condition is satisfied for the Hart-Smith model (3.1) for arbitrary deformations. 
In particular, inequalities (3.2) are satisfied for $ = 0 and v = 0.25. In this case, from (I.?+ (X17), (2.4), 

and (2&f, we get 

(3.4) 

Since the inequalities I (y- l)(y -2)i;b $, y’ c 16, and 3y3 + 1 > 4 are satisfied for y ~(1, 21, condition 
(2.11) of Theorem 1 is satisfied. Requirements (2.12) and (2.13) are ltlso satisfied (which esn be easily 
verified using (3.4), taking into amount that h= y-'"). Thus, for 4 =O and v=O.25, a Hart-Smith 
material has high stiffness, i.e. a “liting” thickness ? 1 exists, above which a bifur~tion of the 
equilibrium of a compressed bar is impossible. The value Z, = 0.7338. was found by numerical methods. 

We remark that expressions (3.4) imply that A(y)>0 (y> 1). Thus, in view of (2.7)-(2.10), we get 
IQ ~4, and r; =+, and, on the basis of assertion 5 of Theorem 1, we conclude that there are no symmetric 
buckling modes for any r > 0. Resides, by assertion 2 of Theorem 1, T- is equal to the interval [0, t] in 
this case (t; = 0, since (2.15) is satisfied). 

The results of computing the %iting” thickness z, for a Hart-Smith material for various values of 
the elastic constants satisfying inequalities (3.2) are listed below (n t d, I d& 

v 3.0 5.0 6.0 8.0 10.0 20.0 20.0 20.0 
n 02 03 0*99 099 099 0.99 O-4 0.f 
% DA;198 o&l39 0.4W2 0.3893 0,?7aa a.3474 0.3408 0,337 1 
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3.2. A fiveconstant A&sander material [S, 111 

n=d,le”“‘-3Pd~~+dz(Iz-3)+d31n 
9 

(35) 

The potential (39, which is in good agreement with the experimental results for chloroprene rubber 
ill], provides one more example of a material with “limiting” thickness. We remark that, apart from the 
notation, the energy (3.5) is identical with the Hart-Smith potential (3.1) for 4 = 0 and k, = 3. 

Lemma 2. Let the elastic constants in (3.5) satisfy at least one of the following sets of conditions (where 
0 is defined by (3.3)) 

d3dsd2Rz (3.6) 

uqk,)- d3 
44 (kz - 3) 

) 0, k2 >6 

Then the Alexander material (3.5) satisfies the Hadamard condition for any deformations. 
The proof is omitted. 
Calculating p(y) from (1.17) and (l.S), we obtain 

(3.7) 

(3.8) 

From (3.9) we can see that p(y) - 4k7’ as y -+ +, i.e. condition (2.13) of Theorem 1 is satisfied. The 
expressions for R(7), A(y) and Z(7) can be found with using (2.4), (2.6), and (3.9) (the expressions are 
awkward and will therefore be omitted). We will just mention that r(r)+4 as y -_) 1 and requirement 
(2.12) is met. The constants 4, 4, d,, k,, kj can be chosen in such a way that condition (2.11) of 
Theorem 1 and at least one of the requirements (3.6)-(3.8) of Lemma 1 are satisfied. In particular, the 
relations 

kiz=05, d2Gdlr d3=0 (3.10) 

serve as sufficient conditions for R(r) to be negative for all y > 1. 
As a consequence, setting, for example, dl = d, = kl = k, = l., d3 = 0, one can simultaneously meet both 

the requirement (3.6) of Lemma 2 and the sufficient conditions (3.10) for R(7) to be negative. 
Thus, for the specified values of the elastic coustants, an Alexander material (3.5) has high stiffness. 
We also remark that if restrictions (3.10) are satisfied, it can be verified directly that the function A(y) 

satisfies the lower estimate 

A(y)~((1-~)2[1+~4(jz-1)213!o (3.11) 

for 7>0. 
By Theorem 1, inequality (3.11) indicates that no symmetric buckling modes are possible in the case 

under consideration for any z > 0. 
The results of computing the “limiting” thickness z. for several sets of elastic constants are listed below 
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4 55) 10.0 15,O 20.0 20.0 20.0 20.0 40.0 
a2 28.0 6.0 5.0 3.0 3.0 3.0 9.0 20.0 
nt 30.0 20.0 5.0 1.0 2.0 3.0 40.0 I.0 
“2 10.0 3.9 2.0 0.99 0.99 0.99 3.0 100.0 
7. o.ss14 0,487a 0.4191 0.3683 0.3815 0.3912 0.4665 0.3756 

Note that in [12, 131 it was established on the basis of an approximate solution of the stability problem 
that a ‘limiting” thickness exists for Treloar and Moone~Rivl~ materials, which, in fact, is not the case. 

Indeed, the potentials corresponding to those materials have, respectively, the following form 

In both cases we obtain 

l-l = d(/, - 3), d = const > 0 (3.12) 

II = d,(li - 3) + d&- 3). d,,d,= cottst > 0 (3.13) 

P(Y) = 1 + $ &y)=y7-3112.-y-l 

(3.14) 

A(Y) = (y - 1 I*, C(y)= (“I+ o* 

on the basis of (l.S), (1.17), (2.4), and (2.6). 
The Hadamard condition for models (3.12) and (3.13) holds for arbitrary deformations [l, 141. Starting 

from the representation (3.14) for R(y) one can easily establish that R (y) has a unique zero y,, = 3.38298 
on L with R(y) < 0 for y E (1, yO), and R(y) > 0 for y > y,,. It follows that assumptions 1 and 2 of Theorem 
3 are satisfied. The verification of ~s~ptio~ 3-5 of this theorem using expressions (3.14) for A(@ and 
r(y) is trivial. This means that all the requirements of Theorem 3 are met, i.e. the bar undergoes a loss of 

stability for all z>O, contrary to the discussion in [12, 131 concerning the existence of a “limiting” 
thickness in these materials. By Theorem 3, symmetric buckling modes (with an arbitrary number m 3 1 
of nodal lines) exist for models (3.12) and (3.13) f or any r > 0, but, since A(y) is positive, they are always 

preceded by antisymmetric modes. This fact is consistent with the result obtained in 1151. 

3.3. A hypothetical material with the potential 

(d, >O, dz > 0, kt >O, k2 >O, n > 0) 

By using the method of [16], it can be shown that the Hadamard condition for model (3.15) is satisfied 

for arbitrary deformations, By (1.5) and (1.17), we find that 

The expressions for R(y), A(y), Z(y) can be found using (2.4), (2.6), and (3.16). Without stating the 

expressions explicitly, we remark that X(y) satisfies (2.12), A(y) is non-negative for all y > 0, and the 
sufficient conditions for R(y) to be negative (for y > 0) have the form 

n+l 

nal, 
di k, + dzkz 3 

di +dz 
‘n22n+l (3.17) 

The first inequality in 
zero in (1, +=) for n < 1. 

It follows from (3.16) 

(3.17) is also necessary, since it can be shown that R(y) must have at least one 

that p(y) behaves like My”‘= (M - -const>O) as y--+w. Consequently, if the 
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sufficient conditions (3.17) for R(7) to be negative are satisfied, all the conditions of Theorem 1 are 

satisfied for n P 2, and all the conditions of Theorem 2 are satisfied for 1 G n < 2. If n < 1, then the case 

c # $ occurs, i.e. the premise of Theorem 4 is true. 
Thus, if n % 2, then the hypothetical material (3.15) has high stiffness, if 1 d n < 2, it has moderate 

stiffness, and if 0 < n c 1, it has low stiffness. Since A(7) 3 0 (7 > 0). no symmetric buckling modes are 
possible in the first two cases (in the third case, even though symmetric modes exist for all ‘T > 0, they are 
preceded by antisymmetric modes). 

We remark that the integral signs in (3.15) can, obviously, be omitted for n = 1 

.=q,4(‘1-3) _l]+4[eq(‘2-3) -11 (3.18) 

For the potential (3.18), a sufficient condition for R(7) to be negative can be obtained from (3.17) by 
substituting n = 1 

d,k, +d&>z 

dl +d, 8 
(3.19) 

It follows that the energy (3.18) (subject to the restriction (3.19)) represents a material of moderate 
stiffness. 

Example (3.15) demonstrates that the stiffness properties of a material (in the sense adopted in the 

present paper) are defined by the ability of the material to accumulate energy as the deformation 
increases. The greater the ability the more stable the material. 

3.4. A Klosner-Segal material [5,17] 

l-I=d,,(lI -3)+d,(Iz -3)+dz(12 -3)2+d3(12 -3)3 (3.20) 

As has been shown experimentally [17], this model provides a satisfactory description of the behaviour 
of natural rubber for Z1, Z2 < 8. We shall confine ourselves to analysing the special case when d, = 0. In 

this case, the potential (3.20) can be shown to satisfy the Hadamard condition for arbitrary deformations 

if and only if the inequalities 

d, r0, d3 20, 3d2+@i+=0 (3.21) 

are satisfied. 

If the latter are supplemented by the condition dI +d, z 0, then ll will be automatically positive for 

z, >3. 

Using formulae (1.5) and (1.7) we find that 

l.l(7)=1+72+4(1-7212 d,7+3d3(7-l)2 

dt72+2d27(7-1)2+3d3(7-1)4 
(3.22) 

The quantities R(7), A(7) and Z(7) can be expressed in terms of p(7) in accordance with (2.4), (2.6), and 
(3.22) (the explicit expressions are omitted due to lack of space). Under the restrictions adopted for the 
elastic constants, it can be shown that R (7) has at least one zero on (1, +m). It follows that the conditions 
of Theorem 4 are satisfied and a KlosnerSegal material has low stiffness. 

Numerical investigations reveal that in the special case when dI = 60, 4 = -10, d3 = 1 (this system of 
constants satisfies (3.21)) R(7) has an isolated zero at y0 = 2.451325 in (1, +m). Moreover, inequalities 
(2.26) (in which one can take, for example, y1 = 6) are satisfied. The remaining assumptions of Theorem 3 

are trivial to verify if one takes into account the equalities A((yO) = -4.64, Z$7,) = 12.36, and lim,,,,, 47) = 
4 and uses Remark 3 on the theorem. The case under consideration is interesting in that relations (2.33)- 
(2.35) are satisfied for the critical values of 7. In particular, for z = 4:) (see formula (2.36)), y,, is a double 
eigenvalue of the boundary-value problem (1.4). (1.8), (1.9). 
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We observe that for y = y,, we have I, = Z, = 3.859267, which remains within the boundaries of the 
experimentally established domain of app~~~~~ of potential (3.20). 

We also remark that the whole discussion presented above, which applies to a KlosnerSegal material, 
remains valid for a Biderman material [S, 181 (the potential corresponding to the latter material can be 
obtained from (3.20) by making the substitution Z1 -Z2). The Biderman model provides an adequate 
description of the behaviour of rubber with sulphur filler [18]. 

n=d~(f~-3)“‘+dz(fz-3) v2 
(3.23) 

(d,aO, d220, df+d&O, v,aO.s. ~~“0.5) 

For v, = v, = 1 the energy (3.23) is identical with the Mooney-Rivlin potential (3.13). With the above- 
mentioned restrictions on the elastic constants, it can be shown that the material (3.23) satisfies the 
Hadamard condition for arbitrary deformations. A distinctive feature of the potential (3.23) is that, unless 
v1 and v, are simultaneously equal to unity, the material is, in fact, non-linear even for very small 
deformations. 

Here we shall a>nfine ourselves to the special case when v, =v, =v. From (1.5), (1.17), (2.4), and (2.6) 
we find that 

R(y)+-(Zvt 1)+(4v-3)y-(2v-1) (3.24) 
A(y) = (1 - Y)~ t 2(v - 1) (1 + yt2, E(y) = (2v - 1) (1 + y)* 

First we assume that v = 0.5. This being the case, a study of the function R (y) reveals that it has a 
unique zero y0 on the ray (1, +=), and inequalities (2.26) (where y1 =+) as well as the condition 
R(y,) > 0 are satisfied. Furthermore 

(3.25) 

Moreover, expression (3.24) for X(r) implies that (2.25) is satisfied. Hence it follows immediately that 
all the conditions of Theorem 3 are satisfied for v>7/8. If v=7/8, then (3.25) yields A(yO)=O. This 
beii so, it can be shown that y,, is equal to three and the relation lin+G(y)= -2x/43 is satisfied, The 
latter relation indicates that y0 = 3 is not a limiting point of the set r,+. This means that the premise of 
Theorem 3 is also satisfied in the case in hand. Finally, for y e 7/8, we have A(y,,) < 0 by (3.25). If (2.25) is 
taken into account and Remark 3 on Theorem 3 is used, then, as before, we can conclude that all the 
conditions of this theorem are met. Consequently, the material under consideration has low stiffness for 
v > 0.5. 

Now, let v=O.S. Then, by (3.24), we have R(y)= yfy-ly, which implies that r,+ = L, i.e. the premise of 
Theorem 4 is satisfied. Thus, for v = 0.5 also, the potential (3.23) defines a material of low stiffness. The 
case v =OS is noteworthy in that some of the elementary inequalities, which are equivalent to the 
Hadamard condition [la], turn into equalities (for certain values of Z1, I,). In other words, for yl = v, = 
0.5, (3.23) belongs to the boundary of the space Z-Z(H) of potentials II that satisfy the Hadamard 
condition. For small deformations of the non-distorted state, the behaviour of thii material is similar to 
the deformation of a aid-pl~tic body. We also remark that (2.43) is satisfied for v = 0.5, i.e. for any 
thickness z, the infimum of the set of critical values of y is equal to unity. Thus the critical load q is non- 
zero. 

In conclusion, we remark that the mathematical formalism developed in Sec. 2 can also be used to 
study the axisymmetric instability of a circular plate compressed by a uniform side pressure. All the 
qualitative properties revealed by the analysis of the behaviour of a bar remain valid for a plate. From the 
quantitative point of view, it is noteworthy that, according to a numerical experiment, the “writings 
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thickness of a plate turns out to be two to three times smaller than that of a bar in the case of materials of 
high stiffness. As an example, we specify two values of 5 computed for a plate made of a Hart-Smith 
material and two values for a plate made of an Alexander material, respectively 

v = 3.0, I = 0.2 * 1; = 0.1647; 

v = 10.0, n = 039 - z, = 0.1458; 

k, = 20.0, kz = 3.0, n1 = 1.0, n2 = 0.99 - ‘t+ = 0.1412; 

k1 = 20.0, kz = 9.0, n1 = 40.0, n~=3,0-~*=0.1747 

It only remains to compare these values of 2, with the data given in Examples 1 and 2. 

REFERENCES 

1. LUR’YE A. I., NW-linear TIuory of EWiy. Nauka, MOLWW, 1980. 
2. TRUE!SDELL C., &W Coarse in Rationat Continuum Mccluuties. Mir, F&scow, 1975. 
3. ZUBOV L M., On uniqueness conditions in the small for the state of hydrostatic compression of an elastic body. 

Plikl. Mat. Me& y 3,497-506$1980. 
4. ZUBOV L. hf., Buddin of plates made of a neo-Hookean material in the case of affiie initial deformations. Prikl. 

Mat m&h. 34$4,632-642,1970. 
5. ODEN J. 2, f’uritc ELmen& of No&near Conrinua McGraw-Hill, New York, 1972 
6. CHERNYKH K. F., Non-&ear lhtov of Ehsticizy in Mcducnieat EngisueGng Cotnpzstati~. M~a~~~n~e 

Leningrad, 1986. 
7. ZIJBOV L. M. and RUDEV A. N., Homogeneous solutions for a prestremed etastic plate. PrikL Mat. Mekh, 42,5, 

920-929,1978 
8. RUDEV A. N., The study of the spectrum of a system of homogeneous solutions. In Proceedings of the Conference 

“Achiewmmts of Tech&&al Progress in the Service of Production”, pp. 51-54, Pskov, 1980. 
9. RUDEV A. N., An exact solution of the stability problem for a thick elastic plate. In Proceedings of the Conference 

“Achievemem of Techmo&gicui Progress in the Service of Production “, pp. 59-61, Pskov, 1980. 
10. HART-SMlTH L J., Ebtsticity parameters for finite deformations of rubber-like materials. Z. Angew. Moth. Phys. 

17,5,#8-6?5,1966. 
11. ALEXANDER H., A constitutive relation for rubber-like materials, Znt. J Engng Sci, 6,9, W-563,1968, 
12. VOL’VICH S. I., Stability of finite deformations of a plate. In Stabiliry Problems in Structural Mechanics, pp. 203- 

209, StroIizdat, Moscow, 1965. 
13. VOL’VICH S. I. and FOKIN Yu. F., On the theory of plate bend@ taking finite deformations into account. in 

Prvce&rgs of the 6th Ail-Union Confemmce on the Theory of She& and P&a&s, B&I, 1966, pp. 244-250. Nat&a. 
Moscow, 1966. 

14. ZEE L. and STERNBERG E., Ordinary and strong elliptic&y in the equilibrium theory of incompressible 
hyperelastic solids. Arch. Rat. Mech Anal. 83,1,53-90,1983. 

15. ZELENIN A. A. and ZUBOV L. M, The behaviour of a thick circular plate after stability loss. W&l. Mat, Mekh. 
52,4,642-&o, 1988. 

16. GURVICH Ye. L. and LUR’YE A. I., On the theory of wave propagation in a non&tear elastic medium (effective 
verification of the Hadamard condition). Zrv. Akud Nauk SSSR, Ml7’ 6,11&116,19W. 

17. KLOSNER 1. M. and SEGAL A., Mechanical characterization of natural rubber. PIBAL Rep. 69-42, Polytechnic 
Inst. of Brook&n, NJ, 1969. 

18. BIDERMAN V. L, Problems in the analysis of rubber elements. In Slr~n@h Antdysia, 3rd Edn, pp. 4W7, Mash& 
Moscow. 1958. 

l%anshzted by T.J.Z. 


